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SUMMARY

Meerkats are one of the most endearing of South African’s wildlife celebrities and one of the most highly studied social
mammals. However, although parasites are widely recognized as important regulatory factors in animal population, basic
knowledge on meerkats’ parasites is lacking. Here 100 fresh fecal samples of wild meerkats were examined for the presence
of endoparasitic infection. Endoparasitic taxa identified by the presence of eggs or oocysts included Toxocara suricattae,
Oxynema suricattae, Pseudandrya suricattae, Cystoisospora sp. and Eimeria sp. Non-specific diagnoses were made for
parasites in the Order Strongylida, Order Spirurida and coccidian based on themorphology and size of the eggs and oocysts.
The prevalence of infection with T. suricattae and the strongylate species increased with age, while prevalence of coccidia
and intensity of infection by the strongylate species increased with decreasing group size, suggesting that stress associated
with living in smaller group may increase susceptibility to parasitism. Moreover, parasite communities were more similar
between individuals from the same group than between individuals from different groups, suggesting an important role of
the environment in parasite infestation.We did not detect any differences betweenmales and females. This study represents
the first detailed report of gastrointestinal parasites in wild meerkats, and is a key starting point for future studies on the
effect of endoparasite load in the life history of this species.
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INTRODUCTION

Infection by endoparasitic organisms is an important
component in the dynamics of wild animal popula-
tions. Effects on vital demographic parameters
such as decreased survival and fecundity have been
described (Anderson and May, 1978; Hudson et al.
1992a; Stirnadel and Ebert, 1997; Krams et al. 2013).
In numerous free-ranging wildlife species, the
distribution of intestinal parasitic infection is affected
by extrinsic or intrinsic factors such as environmental
conditions, population density and host age, sex or
condition (Setchell et al. 2007; Thurber et al. 2011;
Oates et al. 2012). For instance, individuals may be
more parasitized when living in larger home ranges
because they encounter more parasite-dense areas
(Nunn and Dokey, 2006), or during years of low food
availability because of nutritional stress (Thurber
et al. 2011).
Meerkats, Suricata suricatta, are one of the most

endearing of South Africa’s wildlife celebrities and
one of the most highly studied social mammals.
Although parasites may be important regulatory

factors in their life history, basic knowledge on their
fauna is limited to taxonomic descriptions of indi-
vidual parasite species, and host-parasite checklists
(Warren, 1970; Lynch, 1980; El-Gayar et al. 2008).
To the best of our knowledge, systematic study of the
parasites infecting meerkats at the population level
has not been undertaken. Likewise, a photographic
atlas illustrating the diagnostic stages of endoparasitic
species infecting meerkats has never been published.
Here we describe and illustrate the distribution
of endoparastic infections in a wild population of
meerkats based on the detection of eggs and oocysts
found in freshly collected feces and an investigation
of the host traits affecting individual infection risk.
We test whether age and sex of the host, and size
of the host group are associated with parasite
prevalence. In addition, as meerkats live in territorial
groups (van Staaden, 1994; Doolan and Macdonald,
1997), we expect individuals from the same group
to host more similar parasite assemblage than
individuals from different groups.

MATERIALS AND METHODS

Study site

This study was conducted on a wild population
of meerkats at the Kalahari Meerkat Project in the
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Kuruman River Reserve (26°58′S, 21°49′E), on
ranchland in the South African Kalahari desert.
Data were collected in March–April 2011 (period 1)
and November 2011 (period 2). Most individuals
were habituated to observation from <2m.

Sample collection

Fecal samples (mean±SE weight: 3·62±0·20 g) were
collected immediately after defecation and stored at
ambient temperature in plastic tubes filled with
15mL 10% buffered neutral formalin. We collected
100 fecal samples (54 samples in period 1 and 46
samples in period 2) from a total of 12 groups
(Table 1). Ten individuals (3 males and 7 females
from 5 groups) were sampled during period 1 and
resampled during period 2, while the remaining
individuals were sampled only once. We sampled
54 females aged between 39 days and 7·3 years
(mean±SE: 1.7±0·3 years), and 46 males aged
between 41 days and 6·2 years (mean±SE:
1·3±0·2 years). At the time of our study, dominant
individuals were older than all other individuals
(>4·5 years vs <3·5 years), except for two dominant
females aged 2·4 years and 3·1 years, one of which
having just acquired dominancy. Age was therefore
highly confounded with social status and we
decided to consider only the age factor. Age and sex
of sampled meerkats were equally distributed among
periods (t98 = −0·40, P= 0·69 and χ2 = 0·01,
P = 0·94).

Fecal sample analyses

Fecal samples were processed for microscopic analy-
sis using the centrifugal sucrose flotation method as
described by Zajac and Conboy (2012). Wet mount
preparations were microscopically examined at ×200,

followed by ×400 for confirmation of parasite
identification. Endoparasitic species were identified
to taxonomic order, family and genus based on their
diagnostic morphology and measurements made
with a calibrated ocular micrometer. When possible,
species level identifications were accomplished using
published host-parasite checklists (Round, 1968;
Lynch, 1980). The distribution of parasitic infections
in the host was analysed based on prevalence and taxa
richness of the infracommunity (Bush et al. 1997).
Variance in prevalence of the strongylate species
was very low and parasite intensity for infection with
the Strongylate species was therefore estimated,
albeit imprecisely, by semi-quantification based on
the following predefined subjective scores: 1 (very
few eggs), 2 (a few eggs), 3 (moderate abundance of
eggs), 4 (many eggs) and 5 (an extremely high amount
of eggs). The scale of intensity gave an idea of
the presence of the taxon in the fecal sample, but may
not be directly related to the number of individuals
in the host animal (the intensity of infection;

Table 1. Number of samples, percentages of individuals sampled within the group, and number of females
and males sampled within the group, for each studied group

Group
identity

Period 1 Period 2

Number
of samples

% of individuals
sampled within
the group

female #;
male #

Number
of samples

% of individuals
sampled within
the group

female #;
male #

A 3 12% 1; 2 7 30% 4; 3
B 5 31% 3; 2 7 49% 3; 4
C 7 40% 2; 5 0
D 9 28% 5; 4 3 10% 2; 1
E 7 24% 5; 2 9 34% 6; 3
F 1 7% 1; 0 0
G 2 10% 0; 2 2 12% 1; 1
H 6 32% 5; 1 3 39% 2; 1
I 3 10% 1; 2 5 20% 1; 4
J 11 42% 7 : 4 5 19% 3 : 2
K 0 4 22% 2; 2
L 1 4% 0; 1 0

Fig. 1. Pictures of two strongyle-like eggs; (a) the small
type and (b) the large type.
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Gillespie, 2006). Scoring was done blind to meerkat
identity.

Statistical analyses

Taxa richness and strongyle infection intensity
were analysed using a linear mixed model (LMM),
while the prevalence of each taxon was analysed using
generalized linear mixed models (GLMM) with
binomial error (i.e. 0 when no egg of the taxon
was found and 1 when at least one egg of the taxon
was found in the host). Sex, age, group size (measured
as the mean number of individuals in the group over
the 3 months before sampling), period (period 1
or period 2), time of sampling (morning or afternoon)
and the interaction between sex and age were
included as fixed effects, and group identity was
included as a random factor. We did not include
meerkat identity as a random factor as 90% of
meerkats were sampled only once. All these analyses
were conducted within SAS version 9.1. We used

2-tailed type-3 tests for fixed effects, and the
Satterthwaite correction for the calculation of fixed
effects degrees of freedom (Littell et al. 2006).
To determine if individuals from the same group

hosted more similar parasite assemblage than indivi-
duals from different groups, we used permutation
t-tests. For each host individual, parasite assemblage
was described as a vector based on presence/absence
of each parasite taxon, and the Jaccard distance was
used to describe dissimilarity in parasite assemblage
between each dyad of meerkats. We used permu-
tation t-test with 5000 permutations to compare
within-group distances to between-group distances.
Permutation t-test and measures of the Jaccard dis-
tances were performed with the R statistical software
(R Development Core Team, 2008).

Fig. 2. Toxocara suricattae (a) with a zygote and (b) with a larva.

Fig. 3. Spirurida eggs: (a) the small ovoid transparent
type and (b) the gnathostoma-like type. Note the
characteristic thick shell and larvae within.

Fig. 4. Oxynema suricattae.
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All analyses were conducted with a significance
level set to α= 0·05. Values are expressed asmean±S.E.
throughout.

RESULTS

Description of endoparasite diagnostic stages

Strongylate eggs (Nematoda, Strongylida). These
eggs exhibit morphology characteristic of species in
the Order Strongylida. They are ovoid with a thin
translucent shell and contain a morula. At least two
types of Strongylate eggs were observed, those
measuring 66 μm×42 μm, and others measuring
123 μm×71 μm (Fig. 1). The smaller eggs were
frequently observed (i.e. in 88% of samples) and
may be ascribed to the parasite speciesArthrocephalus
gambiensis (Ortlepp, 1925) described from aGambian
mongoose. Eggs of the family Ancylostomidae are
comparable in size, and have been reported variously
from related genera in the African Feliformia
(Round, 1968). The larger eggs are characteristic of
parasite species in the families Strongyloidea and
Trichostrongyloidea and were occasionally embryo-
nated. As they were observed in 4 female meerkats
only, they were excluded from the statistical analyses.

Toxocara suricattae (Ortlepp, 1940) (Warren, 1970)
(Nematoda, Ascaridida). These eggs exhibit mor-
phology typical of the genus with a pitted subsphe-
rical thick shell. The eggs are round-shaped and
contain a very dark one-celled zygote or occasionally
a larva (egg size: 80 μm×71 μm; Fig. 2a and b).

Spirurid eggs (Nematoda, Spirurida). Two types of
eggs were observed. Small (45 μm×30 μm), ovoid,
thick-shelled, transparent eggs containing a larva
(Fig. 3a) are morphologically consistent with
Vigisospirura whitei listed by Lynch (1980), and

have been previously attributed to meerkats (Round,
1968). Larger (58 μm×44 μm), brown, thick-shelled
eggs with a distinct polar plug containing a larva were
classified as Gnathostoma-like eggs (Fig. 3b). These
large eggs were only observed in a single individual.
Eggs of similar morphology have not been previously
described from host genera in the familyHerpestidae.

Oxynema suricattae (Monnig, 1931) (Inglis, 1955)
(Nematoda, Oxyurida). The most common pin-
worm egg found in meerkats is characterized by an
oblong egg (egg size: 74 μm×55 μm) containing
a distinctive embryo with a small protuberance
on the distal end. The shell is thick and may be
associated with fecally derived detritus on its surface.
Occasionally, the eggs contain a one-celled zygote or a
larva, instead of the embryo (Fig. 4).

Pseudandrya suricattae (Ortlepp, 1938) (Baer, 1959)
(Cestoda, Hymenolepididae). These eggs exhibit
morphology typical of the Hymenolepididae. They
are round-shaped with a transparent membrane
enclosing a hooked oncosphere (egg size:
49 μm×39 μm; Fig. 5).

Coccidia. Several types of coccidia were found
(Fig. 6). The most common is an isosporid coccidia
(oocyst size: 29 μm×25 μm; Fig. 6a and b), which
seems to be morphologically similar to the coccidia
Cystoisospora timoni described in recently imported
and long-resident zoo-housed meerkats (El-Gayar
et al. 2008). Round and ovoid shapes of the
Cystoisospora sp. oocyst were observed. Round
coccidia (size: 34 μm×30 μm; Fig. 6c) with 6–9
sporocysts were found in 5 samples from 3 groups.
Large oblong brown coccidia (size: 47 μm×34 μm;
Fig. 6d) with a thick shell and a fuzzy surface were
found in 6 samples from 4 different groups.
Sporulated eimeriid coccidia were found in one
sample (size: 33 μm×18 μm; Fig. 6e).

Relation with host traits and group factors

Evidence of parasitic infection was found in all
individuals, except in the youngest pup. Taxa
richness per individual ranged from 0 to 6 parasite
taxa per sample with a mean of 3·13±0·13 per
individual and increased with age (F1,91·2 = 10·68,
P = 0·0015; Fig. 7). Taxa richness was higher in
November than in March/April (3·49±0·19 taxa
vs 2·84±0·16 taxa; F1,96·9 = 8·75, P= 0·0039). Taxa
richness did not vary with sex of the host, group size
or time of sampling.

Similarly, strongyle fecal egg counts increased with
meerkats’ age (F1,94·6 = 13·08, P= 0·0005; Table 2).
Strongyle-like eggs were absent in the feces of pups
less than 2month old (n = 5) and infection prevalence
was 50% in pups aged between 2 and 4 months

Fig. 5. Pseudandrya suricattae.
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(n = 16) and was 100% in all individuals of other age
groups. The occurrence of Toxocara eggs in the feces
of infected hosts increased with meerkats’ age
(F1,98 = 8·92, P= 0·0036; Table 2). Toxocara eggs
were absent in the feces of individuals less than 80
days old.

Prevalence of tapeworm infection in the host
population was seasonally distributed (F1,98 = 6·97,
P= 0·0096). Fecal samples collected in November
were 3·5 times more likely to be positive for infection
than samples collected inMarch–April (prevalence in
November: 38±7% vs prevalence in March–April:
11±4%). Strongyle fecal egg counts were higher
when samples were collected in the morning than in
the afternoon (2·42±0·17 eggs vs 1·96±0·18 eggs;
F1,91·6 = 5·59, P= 0·02). None of the parasite pre-
valences were associated with the sex of the host.
Strongyle fecal egg counts and occurrence of

coccida oocysts decreased with group size
(F1,10·5 = 6·00, P= 0·033; Fig. 8a and F1,11·7 = 6·18,
P= 0·029; Fig. 8b). Meerkats from the same group
hosted more similar parasite assemblage than meer-
kats from different groups (permutation t-test:
t505,4346 = −4·02, P< 0·0001, Fig. 9).

DISCUSSION

The prevalence of endoparasitic infection in this
population of wild meerkats was high. All meerkats
except one were parasitized. Such prevalence is fairly
typical of wild mammals (e.g. Müller-Graf, 1995;

Fig. 6. Coccidia oocysts: Cystoisospora species (a, b), coccidia oocyst with multiple sporocysts (c), large brown coccidia
(d), and Eimeria oocyst (e).

Fig. 7. Parasite taxa richness according to meerkat age.
Lines show GLMM prediction and 95% confidence
bands.
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Behnke et al. 1999; Lilly et al. 2002). This meerkat
population is overall healthy and stable (Bateman
et al. 2013), with no clinical symptoms related to the
degree of parasite infection (personal observations).
However, in many species, subclinical parasitism is
common and associated with impaired nutrition,
inadequate feeding behaviour, restricted travel due to
energy deficits or inability to compete for resources
and escape predation (Parkins and Holmes, 1989;
Hudson et al. 1992b; Alzaga et al. 2008). Detailed
studies are therefore needed to properly evaluate the
impact of parasitism on meerkat behaviour and
fitness.

We found that prevalence of infection with
coccidia and fecal egg counts for strongyle-type
nematode parasites were negatively correlated with
group size. This finding is in contrast with other
studies showing that, in several species, including
rhesus monkeys Macaca mulatta, bank swallows
Riparia riparia and several African bovids with
closed-group structures, parasite intensity or preva-
lence increases with group size (Hoogland and
Sherman, 1976; Phillippi and Clarke, 1992;
Ezenwa, 2004; see review in Côté and Poulin, 1995,
and Patterson and Ruckstuhl, 2013). In large groups,
transmission of directly and indirectly transmitted
parasites is expected to be higher than in small
groups, as host proximity and the number and
duration of conspecifics contacts usually increase
(Alexander, 1974; Patterson and Ruckstuhl, 2013).
On the other hand, smaller groups may be at a
disadvantage in resource competition, with restricted
foraging opportunities, poor quality forage, reduced
ability to defend resource-rich loci, and vulnerability
to predation (Foster and Treherne, 1981; Krause and
Ruxton, 2002). In cooperative species, per capita
energy expenditures associated with caring and
provisioning for pups may be greater in smaller
groups (Clutton-Brock et al. 1998). Accordingly, in
meerkats, adult mortality is higher in small groups
than in large groups, and smaller groups are more at
risk of group extinction, especially during years of
low food availability (Clutton-Brock et al. 1999). It is
therefore reasonable to interpret factors associated
with small group size as stressors that may exacerbate
meerkat susceptibility to parasitism.

The occurrence of infection with Toxocara suri-
cattae and Strongylate nematode parasites increased
with age. The pattern of infection with T. suricattae
stands in marked contrast to the life cycle biology
documented for Toxocara canis, and Toxocara cati
where susceptible hosts are infected prenatally by
the transplacental route or by the lactogenic route
as neonates (Soulsby, 1982). In this study, the age of
the youngest meerkat infected with T. suricattae was
83 days old. Although one cannot exclude that the
prepatent period of T. suricattae is longer than the
one ofT. canis andT. cati (i.e. 30–35 days and 56 days
respectively; Dryden, 1996), the pattern found inT
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meerkats may indicate that vertical transmission of
infective parasites does not occur in this host species.
Meerkat pups are likely infected by direct ingestion of
the embryonated eggs that are picked up on their fur
when they begin using communal latrines from their
third month of life (van Staaden, 1994).
The increase of strongyle egg counts with age in

meerkats is in accord with other studies. In African
elephants Loxodonta africana and plain zebra Equus
quagga, strongyle egg count is lower in younger
family group members than in older animals
(Thurber et al. 2011; Fugazzola and Stancampiano,
2012). The pattern of infection observed in this study
suggests chronic exposure, and accumulation of
infective parasite stages over time. The development
of acquired immunity by the host facilitated by
chronic exposure to the parasites may further
mitigate the intensity of parasite burdens in adult

hosts and susceptibility to adverse health effects
(Hudson and Dobson, 1997).
The tapeworm, Pseudandrya suricattae, was the

only parasite with a seasonal distribution. Fecal
samples collected in November were 3·5 times more
likely to be positive for tapeworm eggs than samples
collected inMarch/April. Infection with this parasite
is the direct result of consumption of Coleoptera that
serve as obligate intermediate hosts for the parasite.
In a study of meerkat dietary preferences, Coleoptera
accounted for 58% of the invertebrates identified in
stomach contents and were the predominant food
item consumed during the winter months (May–
July) (van Staaden, 1994). The presence of tape-
worms in the November-collected samples may be a
residual effect of the winter diet. It is not surprising
that seasonality was not observed with the other
parasitic species identified. Each of the nematode
parasite species, with the exception of the Spirurida,
have direct life cycle biology and infections are
characteristically associated with the ingestion or
skin penetration of infective eggs or larvae from
fecally contaminated loci. The Spirurida, however,
have an indirect life cycle biology and utilize a variety
of insects, including Coleoptera, as obligate inter-
mediate hosts. The lack of seasonality observed with
this species may be a reflection of the long prepatent
period of spirurids (Quentin, 1969; Sen and
Anantaraman, 1971) and its persistence within the
host (Soulsby, 1982).
Although sex differences in parasitism are com-

monly observed (Zuk and McKean, 1996; Turner
et al. 2012), we did not detect any differences between
male and female meerkats. A lack of sex differences
has also been observed in several species, such as
Kafue lechwesKobus leche kafuensis (Munyeme et al.
2010), New Zealand sea lions Phocartos hookeri

Fig. 8. Strongyle egg count (a) and coccidia prevalence (b) according to group size. When the three outliers (group size
of group H period 2 = 7·8 individuals) are removed, the correlation remains significant for strongyle egg count
(F1,9·2 = 6·75, P= 0·029), while it tends to be significant for coccidia prevalence (F1,10·5 = 4·53, P= 0·058). Lines show
GLMM prediction and 95% confidence bands.

Fig. 9. Mean Jaccard distance (±S.E.) in parasite
assemblage in dyads of meerkats from the same group
(i.e. within groups) and dyads of meerkats from different
groups (i.e. between groups).
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(Castinel et al. 2007) or cats and dogs (Visco et al.
1978; Becker et al. 2012). Sex differences are
usually attributed to ecological, morphological or
physiological differences between males and females.
For instance, larger home range, larger size or high
testosterone levels have often been considered as
factors causing higher parasite load in males.
Meerkats are however sexually monomorphic (van
Staaden, 1994; Clutton-Brock et al. 2002) and,
although only males frequently prospect outside the
territory (Doolan andMacdonald, 1996; Young et al.
2007), subordinate females are often evicted from the
group, when like males, they may experience nearby
territories (Clutton-Brock et al. 2008).

Meerkats living in the samegrouphostmore similar
parasite assemblage than meerkats living in different
groups. As a territorial species, meerkats from the
same group share the same environment and diet and
are thus exposed to similar parasites. In addition, our
study population lives on different ranchlands, which
differ in the livestock they host. Some groups of
meerkats are thus mainly in contact with goats,
gemsbok Oryx gazella or eland Taurotragus oryx
while others are mainly in contact with cattle or
ostrich Struthio camelus. Land use by livestock may
affect environmental conditions and hence parasite
assemblage development in meerkats.

In conclusion, our study is the first detailed report
on gastrointestinal parasites in meerkats and iden-
tifies several potential factors affecting parasite
infection. It is a key starting point for future studies
on the effect of endoparasite load in the life history of
this species. Necropsy andmolecular genetic analyses
would however be needed to further identify each
parasite species.
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